

Principle

Based on our policy, "Quality in Motion," we provide elevators and escalators that will satisfy our customers with high levels of comfort, efficiency, ecology and safety.

Efficiency

Comfort

Quality in Viotion®

Ecology

Safety

Our elevators, escalators and building management systems are always evolving, helping achieve our goal of being the No.1 brand in quality.

In order to satisfy customers in all aspects of comfort, efficiency and safety while realizing a sustainable society, quality must be of the highest level in all products and business activities, while priority is place on consideration for the environment. As the times change, we promise to utilize the collective strengths of its advanced and environmental technologies to offer its customers safe and reliable products while contributing to society.

We strive to be green in all of our business activities.

We take every action to reduce environmental burden during each process of our elevators' and escalators' lifecycle.

* Quality in Motion is a registered trademark of Mitsubishi Electric Corporation.

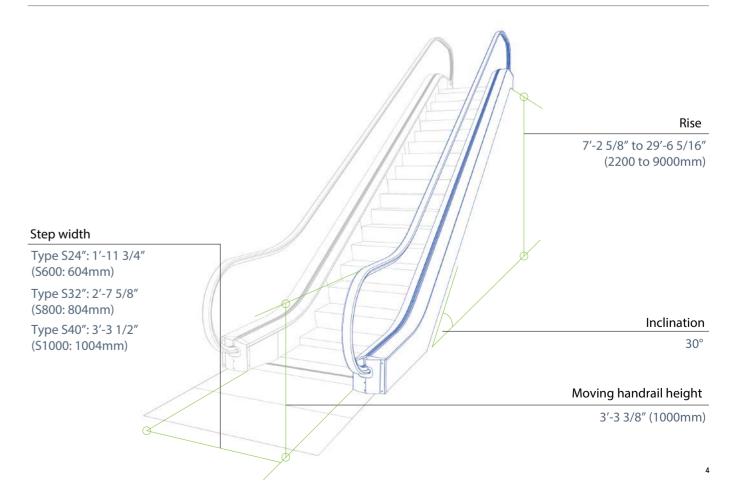
Contents

Models for Various Scenes 5-

Safety 7-8

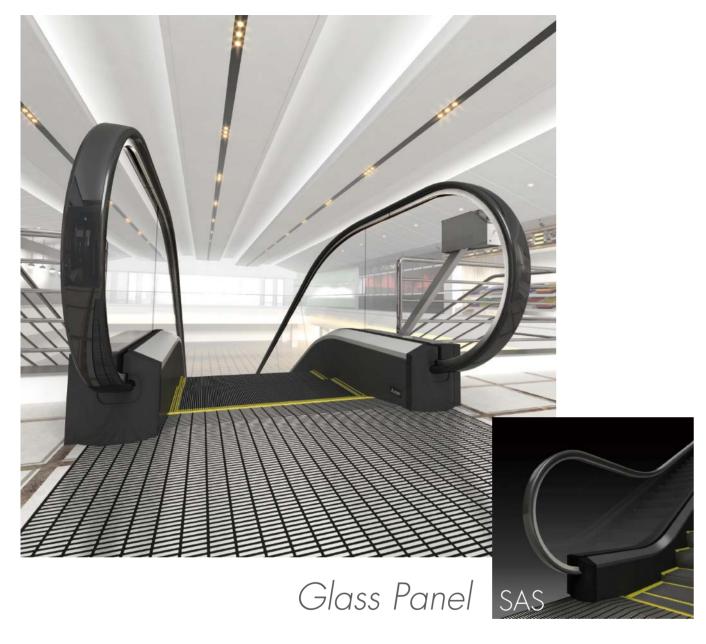
Comfort 9-10

Specifications 11-12


Safety Devices 13-14

Layout 15-16

Remote Monitoring / Environmental Requirements 17


Important Information 18

Dimensions

Models for Various Scenes

Moving Handrails*

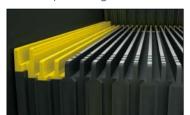
Standard

Polyurethane Moving handrails made of polyurethane are highly resistant to dirt on their surface and create a shiny and brighter look.

* Actual handrail colors may differ slightly from those shown.

6

Safety


Features Supporting the Safety of All Users

Various features that ensure the safety of all users from the elderly to children and support users in boarding and getting off escalators smoothly

Tiered Demarcation Line

Standard

Demarcations along both sides of a step are raised from the step surface, providing enhanced safety.

Step with Anti-Slip Grooves

Standard

Grooves along the corner edge of each step improve anti-slip performance and the visibility of each step for further passenger safety.

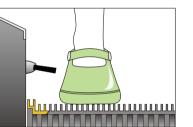
Brighter Demarcation Color

Standard

The brightness of the yellow demarcation lines has been improved to provide better visibility.

Standard

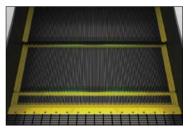
The skirt guards have a special painting/coating on the surface, ensuring a low coefficient of friction and minimizing the risk of items getting caught.



Skirt Brush

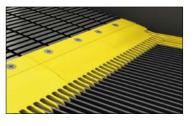
Optional

Skirt brushes installed on the skirt guard prevent passengers' clothes or shoes from getting caught between the step and the skirt guard.



Comb LightStep Demarcation Lighting

Lighting provided at comb level and under the steps improves passenger safety at boarding and landing areas.



Comb with Smaller Angle

Standard

We have made the angle the smallest it can be to keep passengers from tripping at boarding and landing areas.

Note

* Please note that passengers' clothes or shoes may be dirtied if the brushes get dirty after a long period of use.

Comfort

Functional Beauty Inspired by Users

Universal designs that pursue true user-friendliness and smart design features based on maximum consideration of users

If a fault occurs on the escalator, the fault indicator displays the fault code, and the operation manager can judge

the lamp indicated next to the fault code. The indicator displays the operation speed in normal operation.

whether the operation can be resumed by the color of

Example of indication: At fault occurrence

(Fault code)

At normal operation

(Operation speed; for example, 50 when the operation speed is 100fpm [0.5m/sec])

Direction Indicator*

LEDs form an arrow to indicate the travel direction of the escalator at the boarding area, or a no-entry sign at the landing area.

Hairline-finished stainless steel At boarding area At landing area

Note:
* Direction indicator and Fault indicator are not applicable for stainless-steel panel type (SAP).

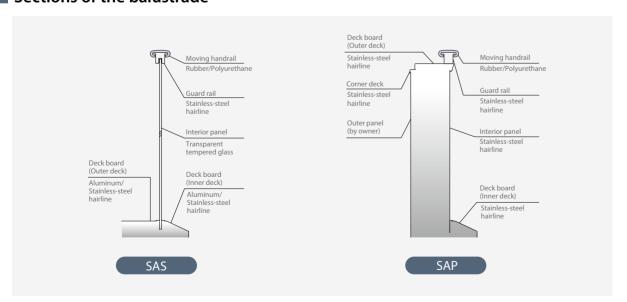
Floor Name

Floor names can be engraved on each floor plate to help passengers quickly identify which floor they are on.

■ Basic specifications

ltem	S24" (S600)	S40" (S1000)					
Models	SAS/SAP						
Codes		ASME A17.1					
Power supply		AC 3-phase, 60Hz					
Lighting power supply		AC single-phase, 60Hz					
Rated speed		100ft/min (0.5m/sec)					
Control system		Standard: AC1					
Theoretical transport capacity*1	4500	6750	9000				
Inclination		30°					
Environment		Indoor*2					
Min. rise		7'-2 5/8" (2200mm)					
Max. rise		29'-6 5/16" (9000mm)					
Step width	1'-11 3/4" (604mm)	2'-7 5/8" (804mm)	3'-3 1/2" (1004mm)				
Escalator width	3'-91/4" (1150mm)	4'-5 1/8" (1350mm)	5'-1" (1550mm)				
Between moving handrails	2'-9 1/16" (840mm) 3'-4 15/16" (1040mm) 4'-0 13/16" (1240mm)						
Between skirt guards	1'-11 15/16" (608mm) 2'-7 13/16" (808mm) 3'-3 11/16" (1008mm)						
Truss width	3'-75/16" (1100mm) 4'-3 3/16" (1300mm) 4'-11 1/16" (1500mm)						
Floor opening	4'-1 3/16" (1250mm)	4'-9 1/16" (1450mm)	5'-4 15/16" (1650mm)				

11


*1: Transport capacity varies depending on actual traffic conditions, so some dimensions and the motor capacity may have to be changed. Please contact our representative for details if the number of passengers during peak time may equal or exceed the following numbers:

S24" (S600): 500 persons per 10 minutes.

S32" (S800): 750 persons per 10 minutes. S40" (S1000): 1000 persons per 10 minutes.

*2: Please refer to "Environmental Requirements" on page 17.

Sections of the balustrade

Applications

●: Standard, O: Optional N/A: Not applicable

Division			Specification	ı	SAS	SAP
Control system	AC1: Ma	nual key switch operat		•		
Horizontal steps	2 horizo	ntal steps			•	
Indicator	Direction	n indicator (LED)			0	N/A
indicator	Fault ind	licator (LED)			0	N/A
	Interior	oanel .	Transparent tempere	d glass	•	N/A
	section	ge 11 for the is of the balustrade.	Stainless-steel, hairlin	e-finish	N/A	•
	Claint accord		Low-friction paint fini	ish (black)		
	Skirt gua	ara	Skirt brush		()
		lance deel.	Aluminum		•	N/A
	Deck	Inner deck	Stainless-steel, hairlin	e-finish	0	•
	board		Aluminum		•	N/A
		Outer deck	Stainless-steel, hairlin	e-finish	0	•
			Aluminum alloy step	tread (Black)		•
Finish and	Step		Aluminum alloy cleat	riser (Black)		•
decorative	step		Step with anti-slip gro	ooves		•
components			Yellow demarcation I	ine		•
			Embossed stainless-s	teel plate (with black-paint grooves)		•
			Floor name (with blace	k-paint grooves)	()
	Floor plat	e	Extension of floor pla	te	()
			Connection of adjace	nt floor plates	()
	Comb		Molded resin (yellow))		•
	Moving ha	andrail	Rubber	No. 0001 (black)		•
	(See page	5 for the colors.)	Polyurethane	No. 5001 to 5010	()
	Handrail	inlet cap	Resin (black)			•
Others	MelEye				()
Others	Automati	c oiler			()

Safety Devices

Various safety devices ensuring high levels of safety and reliability

Handrail Entry Device (HGS) (Handrail Guard Safety Device)

1) Inlet Guard

A guard made of soft rubber, which fits over the outside of the moving handrail where it enters the balustrade to keep fingers, hands or foreign objects away from the moving handrail opening

2) Inlet Guard Switch

A safety device that stops escalator when physical contact is made with the inlet

2 Emergency Stop Button (E-STOP)

A button to immediately stop the escalator in emergency situations

3 Comb-Step Impact Device (CIS)

A safety device that stops the escalator if a horizontal or vertical movement of a comb is detected due to an entrapped foreign object or the impact from external forces

Skirt Obstruction Device (SSS) (Skirt Guard Safety Device)

A safety device to stop the escalator if a shoe or other item becomes trapped in the gap between the step and skirt guard

Step Up Thrust Device (CRS) (Step Motion Safety Device)

A safety device to stop the escalator when a step has been dislocated on its riser side due to an object caught between the Steps, or between the skirt guard and the step, or if an abnormality has been observed in the step motion

6 Step Level Device (SRS)

A safety device that stops the escalator if the horizontal level of a step has dropped

Mandrail-Speed Monitoring Device (HSS) (Handrail Speed Safety Device)

A safety device that stops the escalator if the moving handrails fail to synchronize with the steps because of slippage, loosening or breakage of the moving handrails

Broken Drive-Chain Device (DCS) (Drive-Chain Safety Device)

A safety device that stops the escalator if the drive chain breaks or stretches beyond an allowable limit

Speed Governor/Reversal Stop Device (GOV)

A safety device that stops the escalator before the operating speed exceeds 120% of the rated speed or if the operation speed becomes unusually slow

B Electromagnetic Brake

A safety device that stops the escalator in the case of power failure, or if any safety device or the emergency stop button has been activated

Overload Detection Device

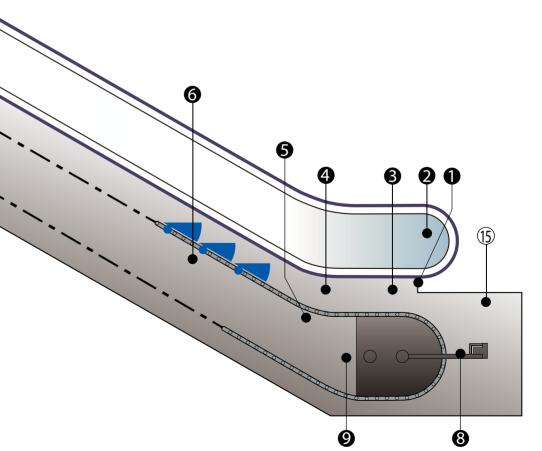
A safety device that stops the escalator if overload has been detected by abnormal current or temperature of the drive motor

(5) Door Open Switch (DOS) (Optional)

A safety switch that stops the escalator when the floor plate is opened

●: Standard ○: Optional

Skirt Brush (Optional)


A safety device to prevent passengers' shoes or clothes from getting caught between steps and skirt guards

Broken Step-Chain Device (SCS) (Step Chain Safety Device)

A safety device that stops the escalator if the step chain breaks or stretches beyond an allowable limit

Missing Step Device (SMS)

A safety device that stops the escalator if it detects a missing step(s) before it is visible to passengers

13

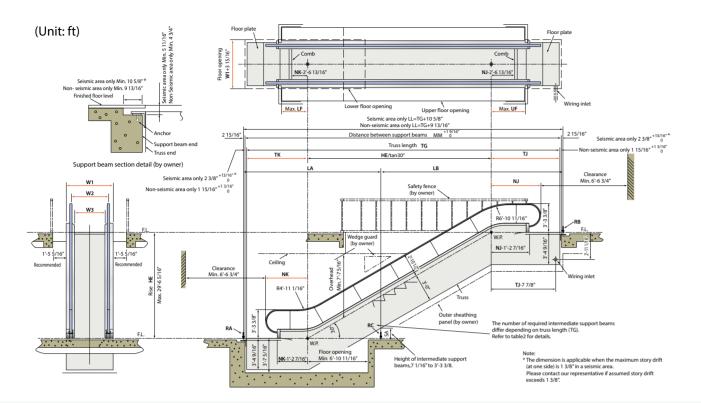


Table 1: Standard dimensions

Width		Туре		Horizontal
wiatn	S24" (S600)	S32" (S800)	S40" (S1000)	steps
W1 (escalator width)	3' - 9 1/4"	4' - 5 1/8"	5' - 1"	
W2 (between moving handrails)	2' - 9 1/16"	3' - 4 15/16"	4' - 0 13/16"	2 steps
W3 (between skirt guards)	1' - 11 15/16"	2' - 7 13/16"	3' - 3 11/16"	

Horizontal	Tuno	T	J	TK	NJ	NK	UE	15
steps	Туре	HE≦7000	7000 <he< th=""><th></th><th></th><th>INIX</th><th>UF</th><th>LF</th></he<>			INIX	UF	LF
	S40" (S1000)	71 11 1 (2)						
2 steps	S32" (S800)	7' - 11 1/2"	8' - 7 3/8"	7' - 3 5/8"	5' - 9 5/16"	5' - 1 7/16"	4' - 0 1/8"	3' - 4 3/16"
	S24" (S600)	8' - 7 3/8"						

Max. LA, LB or LC

36' - 1 1/16"

Table 2: No. of intermediate support beam

Туре	Without	1 beam	2 beams	Туре	T
S40" (S1000)	TG ≤ 48' - 8 5/8"	48' - 8 5/8" < TG ≤ 71' - 4 5/16"	71' - 4 5/16" < TG	S40" (S1000)	
				S32" (S800)	
S32" (S800)	TG ≤ 49' - 6 1/2"	49' - 6 1/2" < TG ≤ 71' - 4 5/16"	71' - 4 5/16" < TG	S24" (S600)	I
S24" (S600)	TG ≤ 50' - 10 1/4"	50' - 10 1/4" < TG ≤ 75' - 11 7/16"	75' - 11 7/16" < TG		
	TG RA	LA LB RB	LL LB RB		

Table 3: Loads (N)

	Mark the state of	With intermediate support beam				
	Without intermediate support beam	1 beam	2 beams			
RA	α *LL+ $\frac{\beta 1 \cdot (LL-TK+X1) + \beta 2 \cdot (TJ-X2)}{LL}$	$\alpha \cdot LA + \beta 1 - \frac{\beta 1 \cdot (TK - X1)}{LA}$				
RB	$\alpha \cdot LL + \frac{\beta 1 \cdot (TK - X1) + \beta 2 \cdot (LL - TJ + X2)}{LL}$	α·LB+β2 - β2·(TJ-X2) LB				
RC		$\alpha \cdot LL + \frac{\beta 1 \cdot (TK-X1)}{LA} + \frac{\beta 2 \cdot (TJ-X2)}{LB}$	$\alpha \cdot (LA+LC) + \frac{\beta 1 \cdot (TK-X1)}{LA}$			
RD			$\alpha \cdot (LB+LC) + \frac{\beta 2 \cdot (TJ-X2)}{LB}$			

Factors

Туре	α (lb/in)
S40" (S1000)	24.2
S32" (S800)	22.0
S24" (S600)	19.9

Χ1, Χ2, β1, β2

Horizontal steps	X1 (ft, in)	X2 (ft, in)	β1 (lb)	β2 (lb)
2 steps	3' - 3 5/16"	3' - 10 3/4"	1012	3125

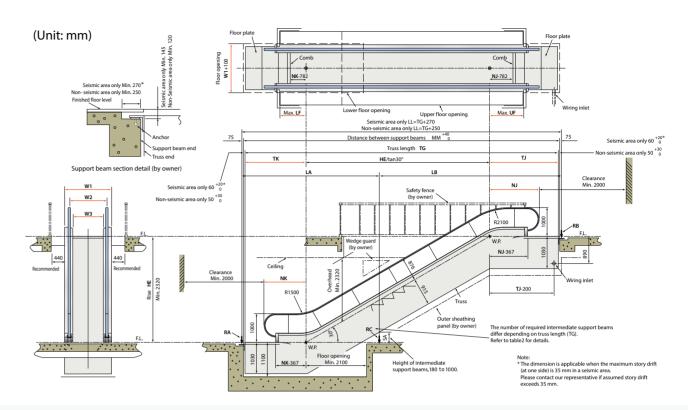


Table 1: Standard dimensions

Width		Туре			Horizontal	Horizontal	Туре	T	.)	TK	NJ	NK	UF	LE
ı	wiatn	S24" (S600)	S32" (S800)	S40" (S1000)		steps	туре	HE≦7000	7000 <he< th=""><th></th><th>IVJ</th><th>INIX</th><th>OF.</th><th>Lr</th></he<>		IVJ	INIX	OF.	Lr
	W1 (escalator width)	1150	1350	1550			S40" (S1000)	2425						
Ī	W2 (between moving handrails)	840	1040	1240		2 steps	S32" (S800)	2425	2625	2225	1760	1560	1223	1020
Ī	W3 (between skirt guards)	608	808	1008			S24" (S600)	2625						

Table 2: No. of intermediate support beam

Туре	Without	1 beam	2 beams	Туре	Max. LA, LB or LC
S40" (S1000)	TG ≤ 14850	14850 14850 < TG ≤ 21750		S40" (S1000)	11000
				S32" (S800)	11000
S32" (S800)	TG ≤ 15100	15100 < TG ≦ 21750	21750 < TG	S24" (S600)	11700
S24" (S600)	TG ≤ 15500	15500 < TG ≦ 23150	23150 < TG		
	ILL TG RA	LA LB RB	LA LC LB RB		

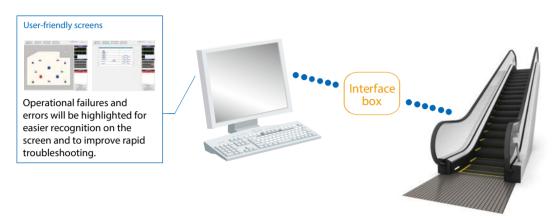
Table 3: Loads (N)

	Mith and internal distancement house	With intermedia	te support beam		
	Without intermediate support beam	1 beam	2 beams		
RA	α *LL+ $\frac{\beta 1 \cdot (LL-TK+X1) + \beta 2 \cdot (TJ-X2)}{LL}$	$\alpha \cdot LA + \beta 1 - \frac{\beta 1 \cdot (TK \cdot X1)}{LA}$			
RB	$\alpha \cdot LL + \frac{\beta 1 \cdot (TK-X1) + \beta 2 \cdot (LL-TJ+X2)}{LL}$	$\alpha \cdot LB + \beta 2 - \frac{\beta 2 \cdot (TJ-X2)}{LB}$			
RC		$\alpha \cdot LL + \frac{\beta 1 \cdot (TK-X1)}{LA} + \frac{\beta 2 \cdot (TJ-X2)}{LB}$	$\alpha \cdot (LA+LC) + \frac{\beta 1 \cdot (TK-X1)}{LA}$		
RD			$\alpha \cdot (LB+LC) + \frac{\beta 2 \cdot (TJ-X2)}{LB}$		

Fа	ct	10	S

Туре	a (N/mm)
S40" (S1000)	4.24
S32" (S800)	3.86
S24" (S600)	3.49

Χ1, Χ2, β1, β2


, AL, p., pL				
Horizontal steps	X1 (mm)	X2 (mm)	β1 (N)	β2 (N)
2 steps	999	1188	4500	13900

Remote Monitoring

MelEye

MelEye is a sophisticated Web-based elevator and escalator monitoring and control* system that allows authorized personnel to respond rapidly to changing traffic patterns and other operational conditions. It improves passenger safety and reliability of your building management.

* Please note that MelEye is designed for monitoring of escalator operation, not to control the escalators remotely.

-nvironmental Requirements

Escalator performance and quality are susceptible to environmental influences. The following environmental conditions shall be ensured for operation of this escalator model.

Location		Indoor (To be surrounded by building structures.)
Permissible ambient Minimum 14°F (-10°C) (Special measures are reconstitution 14°F (-10°C).)		14°F (-10°C) (Special measures are required in cold districts where the ambient temperature can drop below 14°F (-10°C).)
temperature For escalator operation	For escalator operation	32°F (0°C) to less than 104°F (40°C)
Others		Measures are required for escalators installed within a radius of 1.24 miles (two-kilometer) from a shore to protect them from direct exposure to salty wind.

mportant Information

Work not included in the escalator contract

The following items are not included in our escalator installation work, and the responsibility for carrying them out lies with the building owners or general contractors:

- Building construction and alterations associated with escalator installation
- Provision of intermediate support beams (if required)
- Provision of truss-supporting beams, including mounting plates
- Floor finishing after escalator installation
- Provision of fire-proofing and fire-prevention measures for escalator exterior materials and around escalator installation
- Provision of fire-prevention shutters (if required by local codes or regulations)
- Wiring for the escalator's main drive and lighting, from around the middle portion of the truss to the escalator's control unit in the upper truss
- Other wiring and electric conduits
- Provision of convenience outlets in the upper and lower truss
- Outer panel sheathing of truss
- Provision of inspection doors (lockable doors if installed in an environment where anyone could access and open the doors)
- All items for which procurement by building owners is instructed (with wording such as "by owner")

Notes on building work

- Tolerance in distance between supporting beams: +1 3/16" (+30mm) to 0" (0mm)
- Flooring around the escalator must not be finished until the escalator is installed.
- Flooring within 11 13/16" (300mm) of the escalator floor plate must not be finished until the floor plates are in place.
- Sprinkler pipes or wiring for soffit lights, or any other electric conduits for items other than escalator, must not be laid inside the truss.
- No walls or other parts of the building structure must be supported on the truss.
- Allowable maximum weight of outer sheathing: 4.1lbf/ft² (196N/m²)

17 18

State-of-the-Art Factories... For the Environment. For Product Quality.

Our elevators and escalators are currently operating in approximately 90 countries around the globe. Built placing priority on safety, our elevators, escalators and building system products are renowned for their excellent efficiency, energy savings and comfort.

The technologies and skills cultivated at the Inazawa Building Systems Works in Japan and 12 global manufacturing factories are utilized in a worldwide network that provides sales, installation and maintenance in support of maintaining and improving product quality.

As a means of contributing to the realization of a sustainable society, we consciously consider the environment in business operations, proactively work to realize a low-carbon, recycling-based society, and promote the preservation of biodiversity.

ISO9001/14001 certification

Mitsubishi Elevator Asia Co., Ltd. has acquired ISO 9001 certification from the International Organization for Standardization based on a review of quality management. The plant has also acquired environmental management system standard ISO 14001 certification.

Mitsubishi Electric US, Inc. Elevator/Escalator Division

Tel: 714-220-4700 / 5900-A Katella Avenue, Cypress, California 90630, U.S.A.

Website: www.mitsubishielevator.com Email: EEDSALES@meus.com

MITSUBISHI ELECTRIC BUILDING SOLUTIONS CORPORATION

HEAD OFFICE : TOKYO BLDG., 2-7-3, MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN

www.MitsubishiElectric.com/elevator

▲ Safety Tips: Be sure to read the instruction manual fully before using this product.